Information query,又稱為 device query,可以查詢設備。 以下是官方範例的檔案,由於使用到了"helper_cuda.h",所以在編譯時, 可能需要加上「-I "C:\Program Files\NVIDIA Corporation\Installer2\CUDASamples_7.5.{A212C81A-4D93-4C1C-A70E-1BBD5256D43B}\common\inc"」 (其中的路徑細節,可能需要自行替換)。:
/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /* This sample queries the properties of the CUDA devices present in the system via CUDA Runtime API. */ // Shared Utilities (QA Testing) // std::system includes #include <memory> #include <iostream> #include <cuda_runtime.h> #include <helper_cuda.h> int *pArgc = NULL; char **pArgv = NULL; #if CUDART_VERSION < 5000 // CUDA-C includes #include <cuda.h> // This function wraps the CUDA Driver API into a template function template <class T> inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device) { CUresult error = cuDeviceGetAttribute(attribute, device_attribute, device); if (CUDA_SUCCESS != error) { fprintf(stderr, "cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n", error, __FILE__, __LINE__); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_FAILURE); } } #endif /* CUDART_VERSION < 5000 */ //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { pArgc = &argc; pArgv = argv; printf("%s Starting...\n\n", argv[0]); printf(" CUDA Device Query (Runtime API) version (CUDART static linking)\n\n"); int deviceCount = 0; cudaError_t error_id = cudaGetDeviceCount(&deviceCount); if (error_id != cudaSuccess) { printf("cudaGetDeviceCount returned %d\n-> %s\n", (int)error_id, cudaGetErrorString(error_id)); printf("Result = FAIL\n"); exit(EXIT_FAILURE); } // This function call returns 0 if there are no CUDA capable devices. if (deviceCount == 0) { printf("There are no available device(s) that support CUDA\n"); } else { printf("Detected %d CUDA Capable device(s)\n", deviceCount); } int dev, driverVersion = 0, runtimeVersion = 0; for (dev = 0; dev < deviceCount; ++dev) { cudaSetDevice(dev); cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, dev); printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name); // Console log cudaDriverGetVersion(&driverVersion); cudaRuntimeGetVersion(&runtimeVersion); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, (driverVersion%100)/10, runtimeVersion/1000, (runtimeVersion%100)/10); printf(" CUDA Capability Major/Minor version number: %d.%d\n", deviceProp.major, deviceProp.minor); char msg[256]; SPRINTF(msg, " Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)deviceProp.totalGlobalMem/1048576.0f, (unsigned long long) deviceProp.totalGlobalMem); printf("%s", msg); printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n", deviceProp.multiProcessorCount, _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor), _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount); printf(" GPU Max Clock rate: %.0f MHz (%0.2f GHz)\n", deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f); #if CUDART_VERSION >= 5000 // This is supported in CUDA 5.0 (runtime API device properties) printf(" Memory Clock rate: %.0f Mhz\n", deviceProp.memoryClockRate * 1e-3f); printf(" Memory Bus Width: %d-bit\n", deviceProp.memoryBusWidth); if (deviceProp.l2CacheSize) { printf(" L2 Cache Size: %d bytes\n", deviceProp.l2CacheSize); } #else // This only available in CUDA 4.0-4.2 (but these were only exposed in the CUDA Driver API) int memoryClock; getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev); printf(" Memory Clock rate: %.0f Mhz\n", memoryClock * 1e-3f); int memBusWidth; getCudaAttribute<int>(&memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev); printf(" Memory Bus Width: %d-bit\n", memBusWidth); int L2CacheSize; getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev); if (L2CacheSize) { printf(" L2 Cache Size: %d bytes\n", L2CacheSize); } #endif printf(" Maximum Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d, %d), 3D=(%d, %d, %d)\n", deviceProp.maxTexture1D , deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1], deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]); printf(" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n", deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]); printf(" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d layers\n", deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1], deviceProp.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %lu bytes\n", deviceProp.totalConstMem); printf(" Total amount of shared memory per block: %lu bytes\n", deviceProp.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n", deviceProp.regsPerBlock); printf(" Warp size: %d\n", deviceProp.warpSize); printf(" Maximum number of threads per multiprocessor: %d\n", deviceProp.maxThreadsPerMultiProcessor); printf(" Maximum number of threads per block: %d\n", deviceProp.maxThreadsPerBlock); printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]); printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]); printf(" Maximum memory pitch: %lu bytes\n", deviceProp.memPitch); printf(" Texture alignment: %lu bytes\n", deviceProp.textureAlignment); printf(" Concurrent copy and kernel execution: %s with %d copy engine(s)\n", (deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount); printf(" Run time limit on kernels: %s\n", deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", deviceProp.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", deviceProp.canMapHostMemory ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", deviceProp.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support: %s\n", deviceProp.ECCEnabled ? "Enabled" : "Disabled"); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n", deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)" : "WDDM (Windows Display Driver Model)"); #endif printf(" Device supports Unified Addressing (UVA): %s\n", deviceProp.unifiedAddressing ? "Yes" : "No"); printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n", deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID); const char *sComputeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this device)", "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", "Unknown", NULL }; printf(" Compute Mode:\n"); printf(" < %s >\n", sComputeMode[deviceProp.computeMode]); } // If there are 2 or more GPUs, query to determine whether RDMA is supported if (deviceCount >= 2) { cudaDeviceProp prop[64]; int gpuid[64]; // we want to find the first two GPUs that can support P2P int gpu_p2p_count = 0; for (int i=0; i < deviceCount; i++) { checkCudaErrors(cudaGetDeviceProperties(&prop[i], i)); // Only boards based on Fermi or later can support P2P if ((prop[i].major >= 2) #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // on Windows (64-bit), the Tesla Compute Cluster driver for windows must be enabled to support this && prop[i].tccDriver #endif ) { // This is an array of P2P capable GPUs gpuid[gpu_p2p_count++] = i; } } // Show all the combinations of support P2P GPUs int can_access_peer; if (gpu_p2p_count >= 2) { for (int i = 0; i < gpu_p2p_count; i++) { for (int j = 0; j < gpu_p2p_count; j++) { if (gpuid[i] == gpuid[j]) { continue; } checkCudaErrors(cudaDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j])); printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[i]].name, gpuid[i], prop[gpuid[j]].name, gpuid[j] , can_access_peer ? "Yes" : "No"); } } } } // csv masterlog info // ***************************** // exe and CUDA driver name printf("\n"); std::string sProfileString = "deviceQuery, CUDA Driver = CUDART"; char cTemp[16]; // driver version sProfileString += ", CUDA Driver Version = "; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 10, "%d.%d", driverVersion/1000, (driverVersion%100)/10); #else sprintf(cTemp, "%d.%d", driverVersion/1000, (driverVersion%100)/10); #endif sProfileString += cTemp; // Runtime version sProfileString += ", CUDA Runtime Version = "; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 10, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10); #else sprintf(cTemp, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10); #endif sProfileString += cTemp; // Device count sProfileString += ", NumDevs = "; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 10, "%d", deviceCount); #else sprintf(cTemp, "%d", deviceCount); #endif sProfileString += cTemp; // Print Out all device Names for (dev = 0; dev < deviceCount; ++dev) { #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 13, ", Device%d = ", dev); #else sprintf(cTemp, ", Device%d = ", dev); #endif cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, dev); sProfileString += cTemp; sProfileString += deviceProp.name; } sProfileString += "\n"; printf("%s", sProfileString.c_str()); printf("Result = PASS\n"); // finish // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(EXIT_SUCCESS); }以 GTX 740M 為例,此程式的主要輸出如下:
Device 0: "GeForce GT 740M" CUDA Driver Version / Runtime Version 7.5 / 7.5 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 2048 MBytes (2147483648 bytes) ( 2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores GPU Max Clock rate: 1033 MHz (1.03 GHz) Memory Clock rate: 800 Mhz Memory Bus Width: 64-bit L2 Cache Size: 524288 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model) Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >